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ABSTRACT
Let X be an observation from a p-variate normal distribution (p 2 3)
with mean vector 6 and unknown positive definite covariance matrix . It
is desired to estimate 6 under the quadratic loss L(5,9,§) = (6-e)tQ(6-e)/tr(Qt),

where Q is a known positive definite matrix. Estimators of the following

form are considered:

s, = (I - ca@ Wl oW xyy x
where W is a p*p random matrix with a Wishart (f,n) distribution (independent
of X), a is the minimum characteristic root of (QW)/(n-p-1) and ¢ is a positive

constant. For appropriate values of ¢, ¢ is shown to be minimax and better

than the usual estimator AO(X) = X.
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1. Introduction
Assume X = (il,...,xp)t is a p-dimensional random vector (p23) which is

normally distributed with mean vector 6 = (el,...,ep)t and positive definite

t

covariance matrix {. It is desired to estimate 6 by an estimator § = (61,...,6p)

under the quadratic loss

L(5,6,3) = (6-0)%Q(8-0)/tr(Q})
where Q is a positive definite (pxp) matrix.

The usual minimax and best invariant estimator for 6 is 60(X) = X. Since

Stein (1955) first showed that 60

identity matrix), a considerable effort by a number of authors (see the '

could be improved upon for Q=}{=I (the

references) has gone into finding significant improvements upon 60. For the
most part these efforts have been directed towards the problems where either
$ was known (or known up to a multiplicative constant) or where Q=t'l (a rather

unrealistic assumption). For unknown { only a few special situations have

been considered. Berger and Bock (1976a) and (1976b) found minimax estimators
(better than 60) for problems in which t was an unkﬁown diagonal matrix or
could bc reduced to one. Gleser (1976) found minimax estimators under the
assumption that the characteristic roots of Qf have a known lower bound.

In this paper the fﬁndamental problem of completely unknown § will be
considered. It will be assumed that an estimate W of { is available, where
W has a Wishart distribution with parameter { and n degrees of freedom, and
is independent of X. Let chmin(A) denote the minimum characteristic root of
A, and define

a = [(-p-Deh @ W) = ch @0/ (n-p-1).

The estimators considered in this paper will be of the form

-1,,-1
(1.1) $SCx,N) = (1 - S8 M 5y |
Xt x ;

where ¢ is a positive constant. For known {, estimators of this form (with (n-p-l)w_l




o

replaced by t-l) were shown to be minimax in Bock (1974) and Berger (1976b),

providing 0 < ¢ <°2(p-2).

where the cn

»

c <

Cc
n,p

lated in Table 1 for certain values of n and p.

Values of c¢
n

Table 1

2

In this paper 8¢ is shown to be minimax for

are solutions to equation (2.17), and are numerically calcu-

N 10 12 14 16 18 20 25 30
. .41 .72 88 03 18 123 . 1.81  1.88
4 .65 137 188 2,77 242 2.60 2.8 Lov 512
5 183 288 347 3R a8 436 4.9 487
6 V71 3.8 497 4.8 535 566 .36 . 6.50
7 342 489 ' B8 5.8 696 792 B.14
8 2.0 5.15 6.57 7.64 8.19 9.24 9.84
9 4.50 7.02 8.40 9.22 10.60 11.28
10 2.61 6.79 8.90 10.25 11.98 12.84
11 5.78  9.15 10.84 13.14 14.24
12 2.73  8.42 11.10 14.20 15.65
13 7.11 11.09 15.48 17.15
14 2.43  9.70 15.74 18.44
15 7.93 16.61 19.51
16 2.26 16.67 20.62
17 16.67 21.56
18 16.34 22.38
19 22.83
20 23.
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2. Minimaxity of &°

The notation E(Z) will be used for the expectation of Z. Subscripts on
E will refer to parameter values, while superscripts on E will refer to the
random variable: with respect to which the expectation is to be taken. When
obvious, subscripts and superscripts will be omitted.

For an estimator, 8, define the risk function

R(5,0,) = Eg’¥ [L(S(X,W),0,$)]

For notational convenience define n* = (n-p-1) and

A = a_(8,$) = tr(@})[R(%,0,8) - R(&,0,8)]
The estimator &° is clearly minimax (and as good as or better than 60) pro-
viding Ac(a,t) < 0 for all 6 and {.
Expanding the quadratic loss L for ¢ verifies that
CZGZ

ca(x-6)tw 1x o xtwlq tw1x |
—

xtwx xtw1x)?

(2.1) Ac = -2E(

As in Berger (1976b) an integration by parts with respéct to the xi gives

£ x-0)tw1x g ercin ) axtw il ix
xtw1x xtw1x xtw1x)?2

Thus (2.1) becomes

€11 t.~1.-1.-1
- W I {
(X"W 'X) X'W X X'W X
Note that
Xt lg 1w 1x : & .
t.-1 o
WX ch . (@)

Using this in (2.2) gives

el ) 1
(2er(iwly - 55—!?—£$-31- =N
(X"W °X) X W X m

(2.3) A, € -E[




In this expression, perform the change of variables

Tys g v =t

bl

Note that V is now Wishart with parameter I and n degrees of freedom, and that

a = ch_. (t%Qt%V)/nt Clearly (2.3) becomes

min
(2.4) 8, < -El 1 erevl - i":—"_;‘l : f],}]
otvly) YoV
For convenience, define
g=ch. @) ., z=wY| , andt - hat/s

mm

Note that chmin(t*) = 1. Lide (2.4) can then be rewritten

(3*v) : ty-2
1 : EV{ m1n (2tr(V 1) i 4ZtV-lZ = %3)}]
Y| 2tv1z) el

-Bc .Y
(2.5) Ac T8 E [

To show that Ac < 0 it suffices to show for all ZEUp (the unit p-sphere) and

all §* with ch_. (§*) = 1, that the following inequality holds:

min

(f*v) t -2
V{ m1n [2tr (V-l) " 4ZtV 1Z c"')}Z 0
@tv” Z) 2V 2

(2.6) E

(Note that the distribution of V does not depend on Z or on t*.)

Let T be a pxp orthogonal matrix such that IZ = (1,0,...,0)t.

Define
V* = r‘Vr‘t and tz = Ft*rt. Clearly V* is also Wishart (I) and chmin(t,) =
For convenience, let Vi dencte the (1,1) element of (V*)-l, v, denote the (1,1)

element of (V*)-z, and let

p(V*) = [2tr{(V*) }- 4v2/v ]
It is straightforward to verify that under the above change of variables for

V, (2.6) becomes

(f,v*
Ny lav'l “‘:“ l.»(v’) -
I

32
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Since chmin(tz)

1, it is clear that

(2.8) chmin(tzV') 2 ch . (V*)

Also if aGUp (i.e. |a] = 1) then

m1n(tzv*) s att V't "

Choosing a to be al, the characteristic vector of the root 1 of tz#, it follows

that

1

(2.9) (tzv*) < (al)tv+a

m1n
For convenience define

nc = {V*: p(V*)< ¢/n*} ,

let 5; denote the complement of Qc, and let IA(V*) denote the usual indicator
function on A. Using (2.8) and (2.9) it then follows that (2.7) will hold

(and ¢ will be minimax) if

(2.10) &' 13—1—!—31 et

1

for all a1 €U .
P

To simplify this expression further, let

10...0
T=|[0 5
. 8
\ 0

where S is a (p-1)x(p-1) orthogonal matrix such that

4
= (b, (0-5°3%p,...,0m° (-1 <b<1).
In (2.10), performing the change of variables V = TV*Tt-(again Wishart (I))

then gives as the condition for minimaxity

1.t 1 ch . (V)
2.1 B 11*%1"“—*‘—’ o) - S11, (V) » +:“—— eV - &Iz (W)} 2
C C

for all al e v .
p>

[e(v*) - 5,11 5 0 ¢ —— [p(v") - §.llac(v*)) 2 0
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-1 t,,-1 -1 2 { -2
h = * = = =
(Note that Vi (v )ll (T°V T)11 (v )11 and likewise v, 4 )11.)

The inequality (2.11) can be rewritten

eV -1 1.t 1 -
(2.12) - <n E" D(V)Vl [(Ta™) "V(Ta )IQCFV) + Chmin(v)lnc(v)]}

Seg {vl'l[(Tal)tV(Tal)IQc(V) + engin (015 (1)

Note that

ma)*v(ral) = b2V v,,) ba-bPF( v, ¢ v

12*V21 22

Hence defining
1

7o(c) sv{p(V)vl' Vzplg (V) + chyy 17 (01}

L
1

7 (e) Ev{p(V)vl‘ Vg,V Iy N},

Q&

v -1

E {p(V)v1 (V12+V21)Is2 v)}
C

TZ(C)

s

V{vl-l[szlﬂc(V) * ey, NIz 1),
V{ ‘1

vy (Vll—vzz)lﬂc(V)} , and

10'(c) E

Tl'(C) E

0, (c) E"{vl‘l(v12 * V)l 1),

. it is clear that (2.12), the condition for minimaxity, can be rewritten

n*['ro(c) + Tl(c)b2 + rz(c)b(l-bz)é_‘,
C <

1

'Ty' () + ‘rl'(c)b2 + rz'b(l-bz)a
: e = 2.2
for all -1 s b < 1. Finally, defining b = (b,(1-b")?)

. 19(€)*1, () 1,(c)/2 7o' (€)+1; ' (€)
A(c) = , and B(c) =
1,(c)/2 14(€) 12'(c)/2

line (2.13) becomes

Sl
(2.14) ¢ (b A{c)b
b B(c)b

12'(c)/2

o' ()

}
1
|
|
|
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Now for fixed 5, the nonnegative solutions to (2.14) lie in an interval
0<c s <5 This ‘can most easily be seen by lookiﬁg at (2.11) (an expression
equivalent to (2.14)) and noting that the left hand side is decreasing in c.
Thus defining

Snp 1505 55 o
it follows that if

(2.15) Brese

then (2.14) will be satisfied for all -1 s b < 1, and hence §¢ will be minimax.

’

To get a more explicit equation for <h p,=note from equation (2.12)

(an equivalent expression to (2.14)) that B(c) is positive definite. Hence

if (2.14) holds for all -1 < b < 1, then
* 'l 1
(2.16) c <n chmin[B(c) A(c)]

Thus (2.15)=» (2.14) for all -1 < b < 1= (2.16). It is also clear that the
reverse implications hold, so that

fcs O <cec<c F=ic: c sn*chmin[B(c)'lA(c)]}

It is also easy to check that

B e
it ‘“*Chmin[B(cn,p) A(cn,p)] *
¢ <n*ch . [B(c) 'A(c)] if bsmec,
and <3
c >n*chmin[B(c) A(9)] if c > cn,p

llence cn" is the unique solution to

(2.17) ¢ =p*ch_. (B(c) YA(c))

min
As there appeared to be little hope of analytically obtaining solutions

to (2.17), the computer was used to numecrically compute the solutions. For

a given n and p, the values of the ri(c) and xi'(c) (and hence A(c) and B(c))

were calculated by monte carlo methods using 4000 generations of V (for n=8) to

1000 generations of V (for n=30). (Unfortunately a larger number of generations

R L T T R W NI T
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. above estimator with ¢ replaced by min{(n-m—l)Yt(w*)'

could not be used due to the considerable expense of generating V and per-

forming the calculations involving V'l.) The resulting estimated solutions,

h p’ to (2.17) were then found and are listed in Table 1. The standard
t)

deviations of these simulated solutions ranged from about .02 (for p=3) to

about .1 (for n-p = 4).

3. Comments
1. The values c ¢ are not the largest values of c for which §€ is
minimax. Approximations were made in the proof (lines (2.8) and (2.9)) which

resulted in a smaller than necessary upper bound. If one could somehow
determine the '"least favorable' matrix tz in (2.7), the approximations could
be eliminated and the largest possible value of c obtained.
2. The estimators & have a singularity as X+0. There

are numerous ways of eliminating the singularity, one of the simplest being
used in the following estimator:
_min(n*x*w X, 0)aq W

xtw2x

Through analogy with the known { situation, it seems quite likely that §*C is

1
s*C,wW) = (I

)X

itself minimax (for 0 < c < ¢ p) and considerably better than 5.

n,

3. If the linear restriction Re=r0 is thought to hold, where R is
an (mxp) matrix of rank m and r0 is an (mx1) vector, then the estimators
6 and 6*® can be modified so that their regions of significant risk
improvement coincide with the linear restriction. Indeed, defining
Y = RX - ro, w* = RWRE, and o* = chmin[BQ-lRt)'IW*]/(n-m-D, Theorem 2 of
Berger and Bock (1976b) can be used to show that

5§ = X -ca*Q RE W) “ly/ [yt o) ly)
is minimax if 0 < ¢ < L The appropriate modification of §*C is the

lY, cl.
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4. If (Qf) has a characteristic root considerably smaller than the other
characteristic roots, then chmin(Qt) will be smallicompared to tr(Qt). From
the definition of Ac(e,t) and line (2.2), it is apparent that the improvement
obtained in using 6 will be quite small. The estimator, 6c, will therefore
perform best when (Qf) has no exceptionally small roots. (If it is suspected
that a coordinate Xi might give rise to an exceptionally small root of (Qt),
it would probably pay to eliminate that coordinate in the construction of Gc,

providing of course that there are at least three coordinates left.)
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